
Secure and Efficient Mobile DNN Using Trusted Execution
Environments

Bin Hu∗, Yan Wang†, Jerry Cheng§, Tianming Zhao∗∗, Yucheng Xie¶, Xiaonan Guo∥ , Yingying Chen∗
∗Rutgers University, †Temple University, §New York Institute of Technology, ∗∗ University of Dayton, ¶Indiana

University-Purdue University Indianapolis, ∥George Mason University

ABSTRACT
Many mobile applications have resorted to deep neural networks
(DNNs) because of their strong inference capabilities. Since both
input data and DNN architectures could be sensitive, there is an
increasing demand for secure DNN execution on mobile devices.
Towards this end, hardware-based trusted execution environments
on mobile devices (mobile TEEs), such as ARM TrustZone, have
recently been exploited to execute CNN securely. However, run-
ning entire DNNs on mobile TEEs is challenging as TEEs have
stringent resource and performance constraints. In this work, we
develop a novel mobile TEE-based security framework that can
efficiently execute the entire DNN in a resource-constrained mo-
bile TEE with minimal inference time overhead. Specifically, we
propose a progressive pruning to gradually identify and remove
the redundant neurons from a DNN while maintaining a high infer-
ence accuracy. Next, we develop a memory optimization method
to deallocate the memory storage of the pruned neurons utilizing
the low-level programming technique. Finally, we devise a novel
adaptive partitioning method that divides the pruned model into
multiple partitions according to the available memory in the mobile
TEE and loads the partitions into the mobile TEE separately with
a minimal loading time overhead. Our experiments with various
DNNs and open-source datasets demonstrate that we can achieve
2-30 times less inference time with comparable accuracy compared
to existing approaches securing entire DNNs with mobile TEE.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Network Pruning, TEE, DNN, Security in Machine Learning

ACM Reference Format:
Bin Hu∗, Yan Wang†, Jerry Cheng§, Tianming Zhao∗∗, Yucheng Xie¶ , Xi-
aonan Guo∥ , Yingying Chen∗. 2018. Secure and Efficient Mobile DNN Us-
ing Trusted Execution Environments. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 13 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Mobile Applications

Mobile
VR/AR

Mobile
Security

Mobile
HCI

Adversarial
Attackers

REE

Pruned Model

Mobile Device

TEE

Needed Part

Deploy
Legitimate User

Pretrained Model

• Attackers can access the non-secure
memory on mobile devices to
perform attacks on Machine
Learning models.

• Attacks: MIA [52], DRA [7], PIA [34],
GAN [15], and Bit-flip [46]

Progressive
Pruning

Cloud Server

Our System

Figure 1: Our approach takes two steps to enable secure and efficient
DNN execution in mobile TEE to defend against Machine Learning
attacks on mobile devices.

1 INTRODUCTION
Deep Neural Networks (DNNs) have achieved remarkable successes
in a broad range of mobile applications such as image recogni-
tion [25], mobile entertainment [18], and VR/AR applications [16],
due to their performance scalability and self-adaptiveness [30].
However, recent studies show that DNNs and their memorized
information on mobile devices are subject to a variety of security
threats, such as Membership Inference Attack (MIA) [53], Data
Reconstruction Attack (DRA) [7] and Property Inference Attack
(PIA) [35]. Thus, protecting DNNs and preserving their data privacy
are critical for developing mobile applications on resource-limited
mobile devices. In recent years, mobile devices have been increas-
ingly equipped with small hardware-isolated Trusted Execution
Environments (TEEs) responsible for security-critical operations.
A TEE employs the hardware security primitive to protect sensi-
tive contents (e.g., private data and DNN architecture) executed
in it even if an attacker has compromised the operating system.
However, it is very challenging to execute DNNs using TEEs on
mobile devices (mobile TEEs) due to the huge gap between the high
demand for resources (i.e., memory and computing power) of DNNs
and the stringent resource constraints of mobile TEEs. For instance,
ResNet-50 [55] on the ImageNet [50] dataset demands over 150MB
of memory, whereas the typical implementation of the mobile TEE

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

only has up to 16MB of memory (i.e., Arm TrustZone Cortex-A [52]).
Although it is physically feasible to deploy more resources into
the secure world (e.g., memory), doing so is directly against the
security principle of maintaining a small Trusted Computing Base
(TCB) and would result in an increased level of exploitable security
vulnerabilities [2, 6, 58]. For example, Cerdeira et al. [2] discovered
that using large sizes of TCB (e.g., QualcommTEE) will expose more
potential vulnerabilities to attackers. Thus, the industry followed
this principle and limited the resources (e.g., secure memory) in mo-
bile TEE (e.g., 8MB-16MB for Raspberry Pi 3 Model B, HiKey family,
and Juno) [32, 38] to keep the TCB as small as possible. For the
cloud TEE (i.e., Inter SGX [3]), the physically protected memory is
also limited to 128MB set in BIOS. Furthermore, the TEE-supported
operating system also limits the memory size (e.g., OP-TEE [34] for
32MB). In this work, we aim to develop a secure and efficient DNN
execution framework via mobile TEE, which adopts this security
principle with a small mobile TEE size (i.e., 16 MB) to decrease the
level of exploitable security vulnerabilities.

Several existing works [38, 58] have tried to address the above
challenge of securing DNN execution on mobile devices by execut-
ing partial DNN (e.g., the first few layers) in a mobile TEE and the
rest of the DNN outside the mobile TEE. However, these approaches
still have traceable information outside TEE that can be compro-
mised by attackers (e.g., Bit-Flip Attack [47]). Recently, researchers
propose to secure the entire DNN execution by entirely or partially
offloading the DNN executions to the TEE on cloud servers (i.e.,
cloud TEEs), which have more resources than mobile TEEs. For
example, Occlumency [26] leverages cloud TEEs (i.e., Intel SGX) to
execute the entire DNN. HybridTEE [6] puts the first few layers
of DNNs in a mobile TEE and the rest in a cloud TEE to reduce
the workload of the mobile TEE. Although these approaches can
meet the desired security requirement of protecting the entire DNN
execution, they heavily rely on network connections which may be
unpredictable and unstable. Furthermore, these existing approaches
suffer from communication degradation since a large number of in-
termediate results need to be transmitted frommobile devices to the
cloud server during the DNN execution. Although the advancement
of mobile network technologies (e.g., 5G) can mitigate communi-
cation degradation, they still involve concerns about data privacy
and network connection availability. More importantly, none of the
existing works take the computation efficiency of execution into
account when leveraging mobile TEEs, which is a critical factor
impeding the deployment of DNNs in resource-constrained mobile
TEEs.

In this work, we develop an innovative secure and efficient DNN
execution framework using mobile TEEs. Our approach is the first
framework that allows resource-constrained mobile devices to se-
curely execute the entire DNN with high accuracy and low latency.
Unlike existing approaches [38, 44] that only optimize DNN infer-
ence accuracy in mobile TEEs, we aim to achieve high inference
accuracy while minimizing the inference time and execution over-
head. Toward this end, we develop the progressive pruning and
memory optimization methods to gradually identify and remove
redundant neurons (i.e., filters in convolutional layers and nodes
in fully connected layers) of a target DNN. In contrast to other

compression techniques (e.g., quantization [61], low-rank factoriza-
tion [36], and knowledge distillation [59]), pruning has the advan-
tages of low power consumption, memory efficient, and provides
faster inference with minimal accuracy compromise [30]. Thus,
pruning is more suitable and necessary to run a large-size DNN
in memory-constraint mobile TEE. A novel adaptive partitioning
and loading method is designed to separate the pruned model into
optimal-size partitions according to the available memory of the
mobile TEE and execute them in the mobile TEE efficiently. Fig-
ure 1 illustrates the basic idea of our approach. We assume machine
learning attackers can access non-securememory onmobile devices.
The attackers aim to compromise the integrity and confidentiality
of the DNN inference on mobile devices. With our unique design
of the fine-grained pruning and resource-aware partitioning, our
approach enables various time- and privacy-sensitive mobile appli-
cations that existing approaches cannot support, including mobile
VR/AR applications [16] involving users’ private location informa-
tion, mobile human-computer interaction (HCI) applications [4]
involving users’ daily activities, voice signatures and hand gestures,
and mobile security applications [14] using security tokens and
biometrics.

There are many challenges in realizing such an optimization
mechanism for secure DNN inference using mobile TEE. To name
a few, designing an effective and efficient pruning method to en-
able DNN execution in TEEs is nontrivial. It requires the pruning
method to accurately identify the redundant model parameters
with minimal retraining iterations. In addition, existing pruning
approaches (e.g., [63, 64]) cannot deallocate the memory space of
pruned parameters because they adopt the static memory allocation
technique (e.g., static array in TensorFlow and PyTorch). Thus, the
pruned DNNs require the same memory and computational cost as
pre-trained models, which cannot fit into resource-constrained mo-
bile TEE. Moreover, no existing works support executing the entire
DNN of various sizes (e.g., small size and large size) in the mobile
TEE because they cannot efficiently partition and load multiple
layers into mobile TEEs. Furthermore, most DNNs use a large size
of memory (e.g., ResNet-50 requires 150MB) or have many layers
(e.g., GoogLeNet has 57 layers). Thus, it is hard to execute DNNs in
mobile TEE efficiently if we use existing layer-by-layer partitioning
and loading approaches, which cannot support various time- and
privacy-sensitive mobile applications.

To address these challenges, we jointly employ a structure prun-
ing approach to reduce memory and computational cost. To main-
tain the high inference accuracy, we propose salient score tomeasure
the global importance of each neuron. In contrast to simply remov-
ing a neuron in each pruning iteration, we design a scale gate to
gradually adjust the impact of neurons on the network, which helps
to reduce the re-train iterations for achieving a reasonably high
model accuracy. We design a low-level re-coding mechanism that
facilitates the irregular neuron patterns to a regular one and deallo-
cates the memory storage for pruned neurons. Thus, the optimized
DNNs can use reduced memory and computation costs and achieve
inference speedup on resource-constrained mobile devices. In ad-
dition, our approach adopts an adaptive partitioning method that
divides the DNNs into multiple parts, which contain as many layers
as possible while satisfying the memory constraint of the mobile
TEE. The proposed multi-layer loading method can load needed

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

parts into mobile TEE with minimal loading iterations. Compared
to the existing approaches of only loading and executing one layer
of DNN in the TEE in each iteration, our approach significantly
reduces loading iterations and inference time overhead, especially
for large DNNs.

We summarize our main contributions as follows:
• We propose a novel structured pruning-based optimization mech-
anism to enable the secure execution of DNNs in resource-
constrained mobile TEEs. Our optimization mechanism is the
first of its kind that can accurately identify redundant neurons,
significantly reduce the actual memory usage of DNNs, and effi-
ciently execute all DNN layers in mobile TEEs.

• We develop a fine-grained structured pruning method that grad-
ually analyzes and adjusts the impact of the neurons on the
DNN’s loss. As a result, the pruning method can accurately iden-
tify redundant neurons having minimal impact on the inference
accuracy with significantly reduced retraining iterations.

• We develop a low-level re-coding optimization mechanism that
transfers irregular neuron patterns to regular ones and deallo-
cates the memory storage of pruned neurons. Such an approach
reduces the memory usage of DNNs and facilitates DNN execu-
tion in resource-constrained mobile TEEs.

• We design an adaptive partitioning method that dynamically par-
titions the pruned DNNs into the partition containing as many
layers as possible while fitting the memory constraint of the mo-
bile TEE. The proposed adaptive partition method significantly
reduces the loading iterations and inference time overhead com-
pared to the existing layer-by-layer loading approaches.

• We put great effort into implementing the first framework using
Darknet [48], DarkneTZ [38], and OP-TEE. The framework can
significantly reduce the effort of developing future research on
DNN optimization in Arm TrustZone. We report the implemen-
tation details and our experience in this work. The source code
of the framework is shared through the public repository.

• Extensive experiments are conducted to evaluate the effective-
ness of our approach with various DNNs and datasets. Evaluation
results demonstrate that we can achieve 2-30 times less inference
time with comparable accuracy compared to existing approaches
(i.e., LL-TEE, TrustedDNN) securing entire DNNs with mobile
TEE.

2 BACKGROUND
2.1 Trusted execution environment (TEE)
The recent developments of TEEs have enabled the opportunity
to secure the computation-intensive workload. A TEE enables the
creation of a secure area on the main processor that provides strong
confidentiality and integrity guarantees to any data and codes it
stores or processes. Over the last few years, significant research
and industry efforts have been devoted to developing secure and
programmable TEEs for high-end devices and mobile devices (e.g.,
Arm TrustZone and AMD SEV [41]). The most popular TEE that
provides access protection to mobile devices is Arm TrustZone.

ARM TrustZone divides the entire System-on-Chip resources
into two “worlds”: The normal world executing vulnerable and
untrusted applications is referred to as the Rich Execution Envi-
ronment (REE). The secure world executing secured applications

is referred to as TEE. Accordingly, a security-sensitive applica-
tion divides itself into two components: an REE-side component
called Client Application (CA) and a TEE-side component called
Trusted Application (TA). All sensitive operations are isolated in
TA, which usually runs on a Trusted OS inside the TEE. By leverag-
ing the TrustZone hardware-assisted isolation, the confidentiality
and integrity of TAs are protected from the untrusted REE. To over-
come the security and privacy issues of DNN inference, we propose
to execute the entire DNNs inside the TrustZone by leveraging
hardware-based protection mechanisms.

2.2 Neural Network Pruning
Neural network pruning aims to compress the DNNs by remov-
ing the redundant parameters to facilitate the dense network
into a sparse one. Pruning approaches can be categorized as non-
structured pruning and structured pruning. Non-structured prun-
ing [29, 62] prunes weights achieving high pruning rates and
promising accuracy, but the resulting pruned model has sparse
weight matrices. As a result, we can not skip the computational pro-
cess for pruned weights to reduce the overall computational cost in
real implementations [43]. Structured pruning [60, 64] removes the
whole filter with a regular structure form, making it more suitable
to obtain direct acceleration on mobile devices.

Since current mobile TEEs have limited memory (e.g., 8-16MB), it
is hard to load and execute the entire DNN in the mobile TEE simul-
taneously. For example, the Arm Trustzone used for this study of-
fered 16MB of memory, whereas VGG-16 [54] on the ImageNet [50]
dataset demand over 630MB of memory. To overcome this issue, we
develop a structured pruning method that removes the unimportant
neurons of DNNs to compress their size. As a result, the memory
and computation demand of DNNs can be significantly reduced,
and the pruned DNNs can be deployed into resource-constrained
mobile TEEs while maintaining high accuracy.

3 METHODOLOGY
3.1 Threat Model and Assumptions
We consider an adversary that can access the non-secure memory
onmobile devices (e.g., an actual userwith authenticating, malicious
third-party software, or compromised OS). The goal is to compro-
mise the confidentiality and integrity of the target DNN model
during the inference, including: 1) modifying the input, weight, and
intermediate results to alter the inference results; and 2) reconstruct-
ing the DNN model by using information (e.g., input, intermediate
results, weight) obtained during inference. We only trust mobile
TEE to guarantee the integrity and confidentiality of the data, DNN
model, and software. We do not consider the side-channel attack
leveraging the memory information inside the mobile TEE to com-
promise the DNNs.

We assume training and pruning processes can guarantee the pri-
vacy and integrity of DNNs on the server. We also assume the input
data and pre-trained DNN model deployed on REE are encrypted
using secure protocols (e.g., MD5 hash [49]). TA will decrypt the
loaded part and then execute the DNN inference inside mobile
TEE. Decryption/encryption keys are securely provisioned into
the secure/insecure world. Several existing works [26, 31, 38] have
demonstrated that such decryption and encryption processes are
practical in use, and the decryption only introduces a few time

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

Step 1: Progressive Pruning

Neuron Importance
Measurement

Pruned
Model

Low-level
Re-coding

Optimized
Model

Adaptive
Partitioning

Partitioned Model

Step 2: Inference Optimization

Pre-trained
Model

Part 2Part 1

Needed Part

Mobile TEE

Neuron Impact
Adjustment

One-shot
Pruning

Loading

Unpruned Neuron Pruned Neuron

Mask Updating

Memory Constraint

Figure 2: Illustration of our proposed approach.

overheads (i.e., less than 5% of inference time) in real-world imple-
mentations.

3.2 Design Goals
Our design aims to achieve the following goals:

Securing the entire DNN inference. We aim to protect in-
ference process and results. Moreover, we seek to safeguard DNN
weights and intermediate results generated during inference since
malicious attackers can use it to reconstruct input data, infer sensi-
tive information, and generate unexpected outputs.

Reducing the DNN inference time overhead. Inferencing
DNNs onmobile TEE introduces significant inference time overhead
due to its memory and computation constraints. The proposed
approach aims to improve memory and inference efficiency to
generate minimal inference time overhead while protecting the
entire DNN inference using the mobile TEE.

Maintaining the high inference accuracy. Our goal is not to
achieve a higher pruning rate compared to the existing state-of-the-
art pruning approaches (e.g., [30, 40, 57]). We aim to maintain the
high inference accuracy for the pruned DNNs while achieving as
much as more pruning rate. Thus, large DNNs could be compressed
and deployed on mobile TEE with high inference accuracy.

3.3 Design Overview
We aim to secure the entire DNN inference on mobile TEE and
improve the inference efficiency. Considering the limited memory
and computational resources of mobile TEE, we design a two-step
mechanism that first prunes the redundant neurons to reduce the
memory and computational cost of the DNN and then optimizes
the pruned DNN to accelerate the inference speed on the mobile
TEE. The flow of the proposed framework is illustrated in Figure 2.

First, we perform a Progressive Pruning to suppress the impact
of redundant neurons on the network gradually and then remove
them with the minimal accuracy loss. To identify the redundant
neurons globally, we propose the neuron salient score in Section 3.4
corresponding to the impacts on the DNN’s performance. To enable
neurons’ gradual adjustment in importance, we design a scale gate
and update masks associated with each neuron using three different
strategies (amplify, hold, and suppress) according to their differ-
ent levels of salient score. We identify the unimportant neurons
by examining the value of masks with a threshold approach. The
pruning iteration stops when the number of unimportant neurons
reaches a target compression ratio. Finally, we perform a one-time

pruning to remove the identified unimportant neurons. At the tar-
get compression ratio, our approach performs the retrain to recover
the DNN’s accuracy. Since the unimportant neurons are removed
with minimal impact on the DNN, the accuracy drop in the DNN
caused by the removed neurons is smaller than the traditional direct
pruning approach.

Next, we propose an Inference Optimization mechanism to opti-
mize the DNN inference for reducing the memory storage and ac-
celerating inference. Specifically, we develop a low-level re-coding
optimization method that reorders the neurons to a regular pattern
and removes the occupied storage of pruned neurons by using the
low-level programming technique (i.e., C programming). Compared
with the existing pruning approaches without using such an opti-
mization method, our approach achieves memory reduction in a
real-world implementation since the allocated memory of pruned
neurons is de-allocated. To minimize the mobile TEE loading it-
erations and time, we design an adaptive partitioning mechanism
(i.e., layer-wised and sub-layer) that partitions the optimized DNN
into multiple parts. The layer-wised approach ensures each part
contains as many layers as possible and fits into the available size
of the mobile TEE. The sub-layer approach divides the one layer
into multiple parts with the maximum size if the size of one layer
exceeds the available size of the mobile TEE. Thus, the entire opti-
mized DNN could be loaded and run on mobile TEE separately with
minimal loading iterations and time. During the DNN inference,
when the current part completes its execution, our approach keeps
the necessary results as the input for the next needed part to load.
The process is repeated until the final output is generated. The
details of each step are described in the following sections.

3.4 Progressive Pruning
In this paper, we employ structure pruning to jointly reduce the
memory demand and improve the inference efficiency. Consider
a set of training examples D = {𝑋 = {𝑥0, 𝑥1, · · · , 𝑥𝑧 }, 𝑌 =

{𝑦0, 𝑦1, · · · , 𝑦𝑧 }}, where x and y represent inputs and target out-
puts, 𝑧 is the size of training set, respectively. The neurons N =

{𝑛0, 𝑛1, · · · , 𝑛𝑘 } are optimized to minimize the cross-entropy loss
L(N ;D) between the prediction results and ground truth. During
pruning, we refine a subset of neurons N ′ that tries to preserve
the accuracy of the original network as much as possible. This
corresponds to an optimization equation:

min
{N′ }

|L(N ′;D) − L(N ;D)| 𝑠 .𝑡 . ∥ N ′ ∥0⩽ 𝜃, (1)

whereN ′ is a subnet ofN , 𝜃 is a target pruning rate, | | · | |0 is the 𝐿0
norm. To minimize the difference in accuracy between the full and
pruned DNN, we need to identify the importance of each neuron
correctly. Thus, we design a mask𝑀 , which is a vector of auxiliary
indicator variables𝑚𝑖 ∈ {0, 1} for every neuron in N . With this,
we leverage 𝑀 to measure the importance of N to the DNN and
decide whether to prune them or not based on their corresponding
mask values in𝑀 . Equation 1 can be modeled as:

min
{𝑀 }

|L(N ⊙ 𝑀 ;D) − L(N ⊙ 𝑀 ;D)| 𝑠 .𝑡 . ∥ 𝑀 ∥0⩽ 𝜃, (2)

where𝑀 are the masks for the pruned model, in which the value
of the corresponding pruned neuron is 0, ⊙ is the Hadamard mul-
tiplication. To finalize the𝑀 of the pruned model, we propose to

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

capture the impact of loss with and without 𝑖𝑡ℎ neuron as:

ΔL𝑖 (N ;D) = L(N ⊙ 𝑀𝑖 ;D) − L(N ⊙ 𝑀𝑖 ;D), (3)
where𝑀𝑖 and𝑀𝑖 are the masks with and without the 𝑖𝑡ℎ neuron,
respectively. However, Equation 3 is computationally expensive
as it requires millions of forward passes over the dataset. To solve
this problem with reasonable computing cost, we use the partial
derivation of the loss function with respect to the 𝑖𝑡ℎ mask 𝑀 to
approximate ΔL𝑖 (N ;D) ≈ 𝜎𝑖 (N ;D) = 𝜕L(N ⊙ 𝑀 ;D)/𝜕𝑀𝑖 .

Based on𝜎𝑖 (N ;D), we define a neuron salient score 𝜀𝑖 tomeasure
the importance of neurons as [19]:

𝜀𝑖 = |𝜎𝑖 (N ;D)|/
𝑘∑︁
𝑗=1

𝜎 𝑗 (N ;D) . (4)

The neuron’s salient score 𝜀𝑖 would reflect the importance of
the 𝑖𝑡ℎ neuron to the DNN since the magnitude of 𝜀𝑖 indicates the
impact of 𝑖𝑡ℎ neuron on the network loss. Existing pruning methods
directly remove the redundant neurons by setting the binary masks
with the value of 0 in a one-shot pruning manner. Such approaches
have coarse-grained resolutions on discovering neurons’ impor-
tance and may result in degraded performance with possible loss
of essential features by mistake. Moreover, the degraded perfor-
mance requires more iterations in the retraining step to recover
the accuracy. Since the estimation of neural salient score is the key
to the accuracy of the pruning approach, we propose to iteratively
identify the salient score and adjust its value.

The proposed progressive pruning consists of the following three
steps: 1) iterations of identifying neuron salient score and adjusting
their impact on the network; 2) stop pruning after reaching the
target accuracy drop; 3) fine-tune the network until convergence on
the target task. In contrast to the existing approaches, we analyze
and adjust the neurons’ salient score in a fine-grained way by
gradually updating the mask. As a result, our approach can ensure
minimal accuracy drop while removing the neurons, facilitating
iteration reduction in the retraining process.

Specifically, in each pruning iteration, we derive a list of salient
scores 𝜀 = {𝜀1, · · · , 𝜀𝑘 } for each neuron using Equation 4 and
sort the list by the descending order: 𝜀𝑠 = {𝜀𝑠1, · · · , 𝜀

𝑠
𝑘
}. The 𝜀𝑠

is then split into three sublists based on their impact on the net-
work: 𝜀𝑠𝑎𝑚𝑝 = {𝜀𝑠1, · · · , 𝜀

𝑠
𝑎}, 𝜀𝑠ℎ𝑜𝑙𝑑 = {𝜀𝑠

𝑎+1, · · · , 𝜀
𝑠
𝑏 }, and 𝜀𝑠𝑠𝑢𝑝 =

{𝜀𝑠
𝑏+1, · · · , 𝜀

𝑠
𝑘
}, where 𝑎 and 𝑏 are boundary index of three sublists.

To dynamically track the impact of each neuron on the network
with various input samples and adjust their impact in a fine-grained
way, we design a dynamic updating strategy (i.e., amplify, hold, and
suppress) for updating corresponding mask by using a scale gate 𝛼𝑖 :
𝑚′
𝑖
= 𝛼𝑖 ×𝑚𝑖 . We determine the value of 𝛼𝑖 by using the following

strategy:

𝛼𝑖 =

𝛼𝑖,𝑎𝑚𝑝 , 𝛼𝑖,𝑎𝑚𝑝 > 1, 𝑤ℎ𝑒𝑛 𝜀𝑠

𝑖
𝑖𝑛 𝜀𝑠𝑎𝑚𝑝

𝛼𝑖,ℎ𝑜𝑙𝑑 , 𝛼𝑖,ℎ𝑜𝑙𝑑 = 1, 𝑤ℎ𝑒𝑛 𝜀𝑠
𝑖
𝑖𝑛 𝜀𝑠

ℎ𝑜𝑙𝑑
𝛼𝑖,𝑠𝑢𝑝 , 0 < 𝛼𝑖,𝑠𝑢𝑝 < 1, 𝑤ℎ𝑒𝑛 𝜀𝑠

𝑖
𝑖𝑛 𝜀𝑠𝑠𝑢𝑝 .

(5)

Our approach ensures the impact of unimportant neurons on
the network decays gradually and will not result in significant
degradation of the accuracy during the pruning process. After mask
updating, we compute the ratio of unimportant neurons based
on the masks that are less than a cut-off threshold 𝛽 . If the ratio
exceeds a target compression ratio 𝜃 , we stop updating the masks

� Low-level Re-coding

Neuron
Re-ordering

�Multi-layers
Loading

�Adaptive
Partitioning

Pre-trained
Model

Optimized
Model

Memory
Reallocating

Needed
Part

Mobile TEE

Partitioned
Model

Figure 3: Our approach takes three steps to optimize the pruned
model to reduce the memory size of the DNN model and ensure the
minimized inference time on mobile TEE.

and performs a one-shot pruning on the unimportant neurons
corresponding to the masks that are less than the cut-off threshold.
Eventually, we perform the retraining process to fine-tune the
model accuracy by recovering certain weights of neurons. In this
work, we empirically determine the scale gate, dividing indices,
cut-off thresholds, and target compression ratios based on input
models.

3.5 Inference Optimization
Although the redundant neurons are removed by progressive prun-
ing, the pruned neuron still occupies the memory space in a real-
world implementation. That is because existing pruning approaches
adopt static memory allocation techniques (e.g., static array in Ten-
sorflow or PyTorch) to store the neurons. Such static memory alloca-
tion techniques cannot really delete the elements from the memory
space. Furthermore, the size of pruned DNN may still suffer from
the memory constraint of mobile TEE. To solve these memory prob-
lems, we employ a three-stage inference optimization mechanism
to reduce the memory occupation: 1) Low-level re-coding: we shape
the irregular neuron pattern to the regular pattern and deallocate
the memory space of the pruned neurons; 2) Adaptive partitioning:
the DNN is partitioned into multiple parts. Each part contains as
many layers as possible while fitting the constraint of memory size
of mobile TEE; 3) Multi-layers loading: the trust application (TA)
loads the needed part, which contains as many layers as possible to
infer the result on mobile TEE with minimal loading time overhead.
Figure 3 illustrates the flow of the proposed inference optimization
mechanism. We describe the details in the rest of this section.

Low-level Re-coding: In traditional pruning approaches, the
pruned neurons still occupy the memory storage because they uti-
lize the static data structure to store the neurons. So the memory
size and computational cost cannot be reduced in a real-world im-
plementation. To address this issue, we propose a low-level recoding
optimization to eliminate pruned neurons’ memory and computa-
tional cost. Specifically, we first extract the sparsity information
from pruned DNNs. It includes neuron patterns and connectivity-
related information (e.g., the pruned neuron patterns presented in
each layer, the connection between the neuron and input/output
channels, the input and output sizes, etc.).

Next, we leverage the extracted information to perform the neu-
ron reordering, which facilitates irregular neuron patterns to the
regular ones [43]. In particular, we first organize the filters with a
similar number of kernels together to improve inter-thread paral-
lelization and order the same kernels in a filter together to improve
intra-thread parallelization. Figure 4 explains neuron reordering

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

Kernels

Fi
lte
rs

DNN layers

Memory
Reallocating

Neuron
Reordering

Original Tensor Optimized Tensor

Figure 4: An example of neuron reordering andmemory reallocating
optimization.

with a simplified example. Here, a matrix represents a convolutional
layer of the DNN model, where each cell is a kernel. Empty kernels
are the ones pruned by our pruning approach. The kernels in the
same row belong to the same filter and are marked with the same
color. Before the reordering, kernels with different numbers are
randomly distributed in one layer. After the reordering, the filters
with the same number of kernels are grouped together.

Then, we utilize the low-level programming (i.e., C/C++) to opti-
mize the data structure (e.g., array) of the pruned DNNs, storing
the kernel/filter to a new optimized one. Specifically, we manu-
ally redefine the new data structure to replace the original one.
The new data structure allocates the contiguous memory space
with regular memory patterns for the remaining neurons and re-
leases the memory storage for pruned ones. Our approach doesn’t
need any dedicated designed hardware to accelerate the inference
speed or reduce the memory size of pruned models in a real-world
implementation.

Adaptive Partitioning: After low-level re-coding optimization,
the pruned DNN may still exceed the memory constraint of the
mobile TEE. Furthermore, the current programs that utilize the
deep learning framework (e.g., PyTorch) allocate the memory for all
parameters at the beginning of the execution at once [22]. Such im-
plementation results in a high paging rate and time overhead when
DNN size exceeds the available memory size [26]. Thus, we propose
a novel adaptive partitioning mechanism to divide the optimized
DNN into multiple parts. Each part is selected to be sufficiently
small to fit in the limited mobile TEE memory. By executing each
part separately, the entire DNN could be computed in pieces on
mobile TEE. More importantly, each part should contain as many
layers as possible to achieve the minimal inference time overhead
introduced by multiple loading iterations. To achieve these goals,
we develop layer-wised partitioning and sub-layer partitioning
methods to dynamically partition the optimized DNNs based on the
memory requirements of DNN inference and mobile TEE. Although
an existing work, Vessels [22] developed an on-demand parameter
loading method to load the needed parameters to the cloud TEE
during DNN inference, such an approach aiming to minimize the
memory footprint of the DNN model wastes many available mem-
ory resources of TEE. As a result, it introduces the high loading
iterations and inference time overhead. In contrast, our approach
can fully utilize the limited memory resources of mobile TEE and
achieve fewer loading iterations and inference time overhead.

Layer-wised Partitioning: The optimized DNN is broken into
multiple parts containing one or more consecutive layers. Each

Kernels

Fi
lte

rs

Input

Layer i

Output

Before Sub-layer partitioning

Kernels

Fi
lte

rs

Sub-layer 1

Sub-layer 2

Output

Layer i

After Sub-layer partitioning
Figure 5: Illustration of sub-layer partitioning approach for convo-
lutional layer.

part should have as many layers as possible while fitting the mem-
ory constraint of mobile TEE to have the minimal loading time
iterations. Since the mobile TEE is designed to conceal sensitive
information (e.g., memory usage), we estimate the available size
of mobile TEE and derive the maximum memory size of each part.
We assume that the mobile TEE is only used for DNN inference
and the size of secure memory 𝑀𝑒𝑚𝑇𝐸𝐸 is fixed, which includes
𝑀𝑒𝑚𝑇𝐴 for the TA and𝑀𝑒𝑚𝑅𝑈𝑁 for TEE run-time.

We first extract the sparsity information (e.g., neuron pattern,
the memory size of each layer, the memory size of input/output,
and the memory size of intermediate results) from the optimized
DNN. Then the maximal memory size𝑀𝑒𝑚_𝑃𝑎𝑟𝑡𝑝 of part 𝑝 could
be computed based on the extracted information as:

(𝑀𝑒𝑚_𝑝𝑎𝑟𝑡𝑝)max = 𝑀𝑒𝑚_𝐼𝑛𝑡𝑟𝑖−1 +
𝑗∑︁

𝑢=𝑖

𝑀𝑒𝑚_𝑙𝑎𝑦𝑒𝑟𝑢 +𝑀𝑒𝑚_𝐼𝑛𝑡𝑟𝑖 ,

(6)
where 𝑀𝑒𝑚_𝐿𝑎𝑦𝑒𝑟𝑢 is the memory size of layer 𝑢, 𝑀𝑒𝑚_𝐼𝑛𝑡𝑟𝑖−1
and 𝑀𝑒𝑚_𝐼𝑛𝑡𝑟𝑖 is the memory size of the intermediate result of
layer 𝑖 − 1 and 𝑖 , 𝑖 ∈ [1, 𝑙], 𝑗 ∈ [𝑖 + 1, 𝑙], 𝑙 is the number of layers.
When 𝑖 = 1, 𝑀𝑒𝑚_𝐼𝑛𝑡𝑟0 is the input sample. 𝑀𝑒𝑚_𝑃𝑎𝑟𝑡𝑝 should
also satisfy for constraint of the secure memory as:

(𝑀𝑒𝑚_𝑝𝑎𝑟𝑡𝑝)max ≤ 𝑀𝑒𝑚𝑇𝐴 . (7)

Based on Equation 6 and Equation 7, we can compute memory
size for𝑀𝑒𝑚_𝑃𝑎𝑟𝑡𝑝 for each part.

Sub-layer Partitioning: If the memory size of a single layer still
exceeds the available memory of mobile TEE, the DNN model will
fail to execute. To overcome this issue, we propose a sub-layer
partitioning method that divides a layer into 𝑛 sub-layers. Each sub-
layer contains a part of neurons and corresponding intermediate
results that could be loaded into secure memory safely. Specifically,
we partition a convolutional layer into multiple sub-layers, which
contain part of the filters and the corresponding output. Further-
more, a fully connected layer is partitioned by multiple sub-layers
by grouping parts of the nodes and their output together. Figure 5
shows an example of proposed sub-layer partitioning methods for
the convolutional layer. The filters in one layer are divided into
two subsets, which, in turns, produces a subset of the intermediate
feature maps. By executing each sub-layer in pieces and combining
the intermediate results for the output of the whole layer, the large
convolutional layers could be run on the mobile TEE.

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The corresponding memory size𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠 of each sub-layers
can be estimated as:

(𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠)max =

𝑗∑︁
𝑣=𝑖

𝑀𝑒𝑚_𝑆𝑢𝑏𝐼𝑛𝑡𝑟𝑣 +𝑀𝑒𝑚_𝑁𝑒𝑢𝑟𝑜𝑛𝑣, (8)

where 𝑀𝑒𝑚_𝑁𝑒𝑢𝑟𝑜𝑛𝑣 is the memory size of neuron 𝑣 ,
𝑀𝑒𝑚_𝑆𝑢𝑏𝐼𝑛𝑡𝑟𝑣 is the memory size of the input and the in-
termediate result of each sub layer 𝑣 , 𝑖 ∈ [1, 𝑙𝑠], 𝑗 ∈ [𝑖 + 1, 𝑙𝑠], 𝑙𝑠
is the number of neurons of each layer. 𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠 should also
satisfy for the secure memory requirments as:

(𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠)max ≤ 𝑀𝑒𝑚𝑇𝐴 . (9)

Next, we can compute memory size 𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠 for each sub-
layer 𝑠 . After computing the𝑀𝑒𝑚_𝑃𝑎𝑟𝑡𝑝 and𝑀𝑒𝑚_𝑆𝑢𝑏𝑙𝑠 , we par-
tition the optimized DNN model into 𝑛 parts and save them into
separated parts for further encryption and loading. Each part may
contain multiple layers or sub-layers of the DNN model and can be
loaded into mobile TEE safely.

Multi-layers Loading. After an optimized DNN is partitioned
into multiple parts, we extract the partitioning information (i.e.,
partition point) and generate a multi-layer loading schedule. The
partitioned DNN and loading schedule are deployed on mobile
devices (e.g., solid-state disk drive (SSD)). Then, the mobile TEE can
load the needed part sequence and inference the predictive result
based on the loading schedule.

Towards this end, we develop a client application (CA) and a
trust application (TA) together to complete multi-layers loading and
inference of the DNN on mobile TEE. Once the inference starts, the
CA first invokes the TA, which initializes the running environment
of the mobile TEE and allocates the secure memory. After the TA
runs in mobile TEE, it loads the needed part of the optimized DNN
into the secure memory. The TA starts the inference and keeps
its output as input for the next partition in the TEE. As each part
depends only on the output of the previous part (or input) and is
stored separately, it can be loaded by the TA into the secure memory
separately. Specifically, the first part with an input sample is passed
and executed in secure memory to compute the activations of all
the neurons it contains first. Once complete, the neurons of the
current part could be discarded and replaced with the next needed
part. The current intermediate result is stored in secure memory
for use as input to the next part. This process is repeated until all
parts of the optimized DNN model are executed in TEE.

Compared with the existing loading methods that load one layer
each time, our multi-layers loading approach significantly reduces
the loading iterations and time overhead. More importantly, while
the existing approaches only focus on partitioning and loading
optimizations on DNNs, our approach optimizes both inference and
loading efficiency simultaneously since the proposed progressive
pruning significantly reduces computation and memory cost.

4 EVALUATION
4.1 Experimental Setup
Implementation. 1) Server Side: The training, pruning, and opti-
mization algorithms are implemented using Darknet library written
in C and are run on a server. 2) Mobile Side: We leverage the Dark-
neTZ to implement TA and CA on a mobile TEE with OP-TEE

Table 1: DNN models specifications (COVN: convolutional layer, FC:
fully-connected layer)

Model Dataset Memory Size (≈ MB) Architecture

MobileNet-V1 CIFAR-10 5 26 COVNs, 1 FCs
ImageNet 20 26 COVNs, 3 FCs

GoogLeNet ImageNet 32 57 COVNs, 1 FCs
AlexNet ImageNet 320 5 COVNs, 3 FCs
ResNet-50 ImageNet 150 53 COVNs, 1 FCs

VGG-16 CIFAR-10 95 13 COVNs, 2 FCs
ImageNet 630 13 COVNs, 3 FCs

operating system, and deploy them on Raspberry Pi 3 Model B+
board (secure memory size is 16MB: 14MB for the TA + 2MB for TEE
run-time). Although we prototype on an ARM Cortex-A processor,
our approach is portable to lower-end ARM TrustZone processors
(e.g., Cortex-M23/33 with 64KB-1MB memory).

Models and Datasets.We evaluate the proposed approach with
5 typical DNNs including 2 small size models (i.e., GoogLeNet [56]
and MobileNet [17]) and 3 deeper & larger size models (i.e.,
AlexNet [24], ResNet-50 [55] and VGG-16 [54]). We run these mod-
els on two types of datasets: a smaller one (i.e., CIFAR-10 [23]) and
a larger one (i.e., ImageNet [50]). Table 1 summarizes the detailed
configurations of models and datasets.

Pruning Setup.We implement a script that utilizes the Random
Search [1] to auto-search optimal parameters of the proposed pro-
gressive pruning approach one by one. The combinations of optimal
parameters are chosen based on which ones can get the highest
pruning rate with the least loss of accuracy. Note we only need to
perform the pruning and optimization process once for each DNN
on the server before deploying it into mobile TEE. Such a process
would not involve much more effort since the optimized DNN can
be re-used many times. For each dataset, we derive a parameter
setting as {𝛼𝑘,𝑎𝑚𝑝 , 𝛼𝑘,𝑠𝑢𝑝 , 𝛽, 𝑎, 𝑏}. The range of each parameter is
set to 𝛼𝑘,𝑎𝑚𝑝 ∈ [1.05, 1.2], 𝛼𝑘,𝑠𝑢𝑝 ∈ [0.35, 0.95], 𝛽 ∈ [0.2, 0.7],
𝑎 ∈ [0.01, 0.3] ∗ 𝑘 , 𝑏 ∈ [0.1, 0.7] ∗ 𝑘 , where 𝑘 is the number of
neurons of the target DNN.

1) CIFAR-10: parameter settings for MobileNet-V1 and VGG-
16 is {1.1, 0.6, 0.35, 0.01, 0.1} and {1.1, 0.6, 0.25, 0.01, 0.15}, respec-
tively. We train DNNs with the SGD with mini-batch size
128, weight decay 0.0005 and momentum 0.9. The training is
started with a learning rate 0.1, and decayed by 0.9 at every 20
epochs, with total 150 epochs. 2) ImageNet: parameter settings
for MobileNet V1, GoogLeNet, ResNet-50, AlexNet, and VGG-16
are {1.1, 0.75, 0.5, 0.1, 0.3, }, {1.1, 0.75, 0.4, 0.1, 0.3}, {1.1, 0.3, 0.5, 0.05,
0.4}, {1.1, 0.3, 0.35, 0.05, 0.4} and {1.1, 0.65, 0.35, 0.05, 0.3}, respec-
tively. With a mini-batch size of 64, the learning rate starts at 0.01,
which decays by 0.9 at every 30 epochs. The total epochs are 300.

Baselines. 1) REE which runs the entire DNNs on the mobile
REE; 2)Hybridwhich runs the first three layers [6, 38] of the DNNs
on mobile TEE, with the remaining layers running in the model
REE; 3) LL-TEE which runs the entire DNNs layer by layer [37] on
the mobile TEE. We use MUL-TEE to denote the proposed loading
approach that loads as many layers as possible into mobile TEE on
unpruned DNN models.

Evaluation Metrics. We measure the proposed progressive
pruning in terms of FLOPs [8] compression rate (FLOPs CR), weight
compression rate (weight CR), accuracy drop (ΔAcc) and re-train
iterations (Re-iters). We also measure the loading iterations (number

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

Table 2: Comparison of different pruning methods on the CIFAR-10
dataset.

Method Weight CR(%) FLOPs CR(%) Re-iters ΔAcc(%)

M
ob
ile
N
et
-V
1 1× baseline 0.0 0.0 150K 0.0

0.75× baseline 43.0 43.5 150K -0.7
0.50× baseline 74.9 74.7 150K -1.2
0.25× baseline 93.8 93.6 150K -5.8

DCP [64] 58.0 73.8 300K +0.41
Our 89.2 90.2 45K +0.3

VG
G
-1
6

VCNN [63] 73.3 39.1 70K -0.1
GAL [29] 77.6 39.6 140K -0.2
ASP [30] 92.7 67.0 140K -0.6
PFS [57] 48.3 50.0 300K +0.19
Our 88.2 87.8 60K -0.42

Table 3: Comparison of different pruning methods on the ImageNet
dataset.

Method Weight CR(%) FLOPs CR(%) Re-iters ΔAcc(%)

M
ob
ile
N
et
-V
1

1× baseline 0.0 0.0 150K 0.0
0.75× baseline 26.0 42.8 150K -3.8
0.50× baseline 69.9 73.6 150K -8.1
0.25× baseline 93.8 93.6 150K -38.8
AMC [13] 42.8 50.1 300K +0.41
PFC [5] 52.5 56.7 300K +0.41
Our 55.2 52.3 85K -0.4

G
oo

L TUKER 69.2 49.5 - -0.24
NISP [60] 67.7 42.32 - -0.23

Our 62.1 40.1 45K -0.32

Re
sN

et
-5
0

VCNN 37.3 36.7 180K -0.1
NISP 46.4 41.7 190K -1.5
GAL 53.4 50.2 230K -0.6

DDS [20] 52.1 45.3 - -3.19
PFC 54.0 50.3 150K -1.2
Our 42.1 38.3 120K -0.3

A
le
xN

et

DCP 94.3 - 190K -0.4
PFC 95.4 - 120K -0.2

AUTO [30] 93.2 89.3 130K -0.1
SA [57] 95.4 - 100K -0.3
Our 90.1 83.5 65K -0.4

VG
G
-1
6

DDS 76.8 67.1 210K -2.0
CP [29] 78.7 67.2 240K -0.4
AMC 75.0 65.2 260K -1.4
SA 73.2 65.0 350K -0.6

AUTO 67.0 - 220K -0.6
Our 74.8 62.5 150K -0.5

of loading times from REE into TEE) and inference latency (total
time to execute a DNN on user input to generate the output).

4.2 Performance of Pruning
4.2.1 Results on CIFAR-10. We first conduct the experiments
with MobileNet-V1 (width multipliers: 1, 0.75, 0.5, 025) and VGG-16
on CIFAR-10 datasets. The multiplier is used to control the number
of channels for all convolution layers. Table 2 shows the comparison
results between our pruning methods and state-of-the-art struc-
tured pruning methods. Against MobileNet-V1 with the DCP, our
approach has 30% and 20% higher Weight CR and FLOPs CR than
the 0.5 baseline MobileNet-V1 and DCP, respectively. Compared
to existing pruning methods on VGG-16, our approach achieves
the comparable weight CR and FLOPs CR, but with 1-5 times fewer

retrain iterations. These results validate the effectiveness of our
approach on a smaller dataset on both light and large DNN models.
4.2.2 Results on ImageNet. To evaluate the effectiveness of our
pruning approach on large-scale datasets, we further conduct ex-
periments to prune MobileNet-V1, GoogLeNet, ResNet-50, AlexNet
and VGG-16 on the ImageNet dataset. We compare our method
with state-of-the-art pruning methods in Table 3. We observe that
our pruning approach achieves comparable weight CR and FLOPs
CR with fewer retrain iterations than other pruning works. For ex-
ample, the results show that our approach has 14% and 10% higher
weight CR and FLOPs CR than the 0.75 baseline MobileNet-V1. In
addition, the results of ResNet-50, AlexNet, VGG-16, and GoogLeNt
show that our approach achieves comparable weight CR and higher
Flops CR in comparison with other pruning approaches with fewer
retrain iterations.

The evaluation results demonstrate that our pruning method
can identify and remove the redundant neurons effectively, suggest-
ing that the proposed pruning method can achieve a comparable
compression ratio with existing state-of-the-art ones with fewer re-
train iterations. More importantly, as our pruning method does not
impact the inference accuracy, the various size of DNNs could be
compressed and deployed onmobile devices with efficient inference.
4.3 Inference Latency
We compare our approach with three baselines on CIFAR-10 and
ImageNet datasets in terms of loading iterations and inference time.
The results are shown in Table 4 and Table 5.

4.3.1 Results on CIFAR-10. Table 4 shows that our approach sig-
nificantly reduces the loading iterations and improves the inference
speed compared to the unpruned/pruned DNNs in 3 baselines. For
instance, the loading iterations and inference time of our approach
on pruned MobileNet-V1 are 1 and 3.91s, which have 27𝑥/27𝑥 and
18𝑥/17𝑥 improvements over the unpruned/pruned LL-TEE baseline,
respectively. For VGG-16, we achieve 2.8𝑥/15𝑥 and 9.8/9.5𝑥 less
loading iterations and inference time over the unpruned/pruned
LL-TEE baseline. We also observe that our approach achieves com-
parable inference time compared with REE and Hybrid baseline
on the unpruned MobileNet-V1 and VGG-16 models without the
concerns of security and network issues. These results demonstrate
the effectiveness of the pruning approach for compressing the DNN
models and improving the inference speed.

4.3.2 Results on ImageNet. We also test our approach on VGG-
16, AlexNet, ResNet-50, GooGleNet, and MobileNet-V1 on the Im-
ageNet to study the performance of our approach on a large and
complex dataset. Note that we are not able to run the unpruned
VGG-16 due to their high memory requirements, which further
justifies our idea of using our approach. The results are shown
in Table 5. We observe that our approach significantly reduces
the loading iterations and improves the inference speed compared
to the unpruned/pruned models in 3 baselines. For instance, the
inference time of our approach on pruned GoogLeNet is 4.34𝑠 ,
which are 1.3𝑥/1.2𝑥 and 27.3𝑥/26.9𝑥 improvements over the un-
pruned/pruned GoogLeNet model in Hybrid and LL-TEE, respec-
tively. For AlexNet, we achieve a 7.4𝑥/1.9𝑥 less inference time than
the unpruned/pruned LL-TEE baseline. We also observe that we
achieve comparable inference time compared with Hybrid baseline

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 4: Comparison of inference time on the CIFAR-10 dataset.

Weight
CR(%)

Loading Method
(Loading Iterations)

Inference
Speed(s)

ΔAcc
(%)

M
ob
ilN

et
-V
1

Baseline
(1/0.75/0.5)

REE (N/A) 0.75/0.69/0.63

0/2.7/20.2Hybrid (N/A) 4.62/4.21/3.95
LL-TEE (27/27/27) 56.72/56.03/55.56
MUL-TEE (1/1/1) (4.92/4.56/4.12)

60.2%
(Progressive
pruning)

REE (N/A) 0.58

0.4Hybrid (N/A) 3.53
LL-TEE (27) 55.12
Our (1) 3.91

VG
G
-1
6

Unpruned
REE (N/A) 1.52

0Hybrid (N/A) 5.53
LL-TEE (18) 43.35
MUL-TEE (7) 13.64

88.2%
(Progressive
pruning)

REE (N/A) 1.06

0.2Hybrid (N/A) 5.09
LL-TEE (15) 39.23
Our (1) 4.93

on the unpruned/pruned AlexNet model without the concerns of
security and network issues. We are aware that the loading itera-
tions of some DNNs exceed the number of layers. For example, the
loading iterations of pruned VGG-16 on the ImageNet dataset in
LL-TEE and our approach are 21 and 15, which are more than the
number of layers 13. The reason is that if the size of one layer is
larger than the available size of the mobile TEE, we have to divide
them into multiple parts to ensure each part can be executed in the
mobile TEE safely. For example, the size of the first fully connected
layer of VGG-16 is over 70MB, which is large than the available
size of mobile TEE (i.e., 16MB). Our sub-layer partitioning method
divides this layer into 6 sub-layers to ensure each sub-layer fits the
memory size of the mobile TEE.

The evaluation results on CIFAR-10 and ImageNet demonstrate
that our approach improves the inference efficiency on various
sizes of DNNs models by compressing DNN size and optimizing
loading iterations jointly.
4.3.3 Ablation Evaluation.
Impact of Progressive Pruning.We conduct the experiment to
gain insight on the effects of the pruning method on the overall
performance. The results are shown in Table 4 and Table 5. We
observe that the proposed progressive pruning approach signifi-
cantly reduces the loading iterations and inference time in 3 base-
lines and MUL-TEE for both 5 models with 2 datasets. Specifically,
the inference time is 0.58s, 3.53s, 55.12s, and 3.91s for the pruned
MobileNet-V1 model on CIFAR-10, which reduces 40.2%, 10.3%,
2.3%, and 19.2% compared to the unpruned model in REE, Hybrid,
LL-TEE, and MUL-TEE. For VGG-16 on CIFAR-10, the pruning ap-
proach reduces the inference times by around 43.2%, 17.1%, 6.1%,
and 63.2% compared to the unprunedmodel in REE, Hybrid, LL-TEE,
and MUL-TEE. Moreover, the inference time for pruned GoogLeNet
in REE, Hybrid, LL-TEE, and MUL-TEE are 0.479s, 0.562s, 13.031s,
and 0.452s, respectively, where has 26.3%, 21.1%, 5.4%, and 52.3%
improvements over the unpruned model. We also observe the same
trend for the other DNNmodels when using pruning approach. The
result demonstrates the effectiveness of the pruning approach for
compressing the DNN models and improving the inference speed.

Table 5: Comparison of inference time on the ImageNet dataset.

Weight
CR(%)

Loading Method
(Loading Iterations)

Inference
Speed(s)

ΔAcc
(%)

M
ob
ilN

et
V-
1 Baseline

(1/0.75/0.5)

REE (N/A) 1.73/1.56/1.41

0/3.8/8.1Hybrid (N/A) 5.22/4.95/4.71
LL-TEE (29/29/29) (62.93/60.61/58.45)
MUL-TEE (2/2/1) (7.43/7.15/4.35)

52.3%
(Progressive
pruning)

REE (N/A) 1.34

0.4Hybrid (N/A) 4.82
LL-TEE (29) 56.92
Our (1) 4.21

G
oo

gL
eN

et Unpruned

REE (N/A) 1.95

0Hybrid (N/A) 5.87
LL-TEE (58) 118.34
MUL-TEE (5) 12.52

62.1%
(Progressive
pruning)

REE 1.46

0.32Hybrid 5.29
LL-TEE (58) 117.63
Our (1) 4.34

A
le
xN

et
Unpruned

REE (N/A) 2.71

0Hybrid (N/A) 6.32
LL-TEE (23) 64.85

MUL-TEE (19) 40.32

90.1%
(Progressive
pruning)

REE (N/A) 2.09

0.4Hybrid (N/A) 5.85
LL-TEE (8) 16.9
Our (3) 8.85

Re
sN

et
-5
0 Unpruned

REE (N/A) 2.28

0Hybrid (N/A) 6.04
LL-TEE (54) 112.2

MUL-TEE (11) 25.33

42.3%
(Progressive
pruning)

REE (N/A) 1.89

0.31Hybrid (N/A) 5.44
LL-TEE (54) 110.4
Our (7) 15.23

VG
G
-1
6

Unpruned
REE (N/A) Not Support

0Hybrid (N/A) Not Support
LL-TEE (49) Not Support

MUL-TEE (43) Not Support

75.1%
(Progressive
pruning)

REE (N/A) 2.64

0.24Hybrid (N/A) 6.53
LL-TEE (21) 48.73
Our (15) 33.62

Impact of MUL-TEE Approach. We also study the impact
of the multi-layers loading method by experimenting with un-
pruned/pruned DNN models compared with the LL-TEE base-
line. For instance, for the unpruned/pruned VGG-16 model on
the CIFAR-10 dataset, MUL-TEE achieves 2.5𝑥/15𝑥 and 3.4𝑥/9.3𝑥
less loading iterations and inference time than the LL-TEE base-
line. Moreover, the inference time of unpruned/pruned GoogLeNet,
AlexNet, and ResNet-50 of MUL-TEE are 12.52s/4.34s, 40.32s/8.85s,
and 25.33s/15.23s, which are 9.2𝑥/29.4𝑥 , 1.2𝑥/2.2𝑥 , and 5.2𝑥/6.9𝑥
faster than LL-TEE baseline. The result confirms the effectiveness
of the multi-layers loading method in improving the inference effi-
ciency compared to existing TEE approaches.

Impact of TEEMemory Size. In order to evaluate the impact of
TEE size on system performance, we examine the overall inference
time of our approach for GoogLeNet and AlexNet with REE, Hybrid,

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

(a) GoogLeNeton ImageNet (b) AlexNet on ImageNet

Figure 6: Performance comparison with different TEE sizes (H: Hy-
brid, L: LL-TEE, O: Our , 8: 8MB, 16: 16MB, 32: 32MB).

and LL-TEE baseline using different TEE sizes (i.e., 8MB, 16MB,
and 32MB). Note that 32MB of TEE size is not a good practice
since it increases the level of exploitable security vulnerabilities [26,
32]. We decompose the overall inference time into two parts: 1)
CPU Execution Time which measures the time spent on computing
the DNN inference; 2) Loading Time which measures the time on
loading needed parts into mobile TEE for inference. Figure 6 shows
the results, which indicate that inferences on mobile TEE introduce
more time overhead compared with REE baseline.

We observe that the loading process introduces most of the
time overhead compared with execution time. Thus, optimizing
the loading time is a critical process for efficient inference DNNs
on mobile TEE. The results show we can significantly reduce the
loading time by 2-4 times on two DNNs with the increasing of
TEE sizes. In contrast, the Hybrid and LL-TEE cannot reduce the
loading time for GoogLeNet with the increasing of TEE sizes since
the GoogLeNet consists of 58 layers, which need to be loaded many
times. Furthermore, the results show our approach has 60% and
85% less CPU execution time compared with REE, Hybrid, and LL-
TEE baseline for GoogLeNet and AlexNet, respectively. The insight
behind the observation is that we could load more or all layers of the
pruned DNN into TEE in one iteration. The results demonstrate that
our approach is effective in reducing the inference time overhead
on the various DNNs by efficiently utilizing the various TEE sizes.
4.3.4 Comparison with Existing Studies. We compare the in-
ference time overhead with three similar existing works in terms
of mobile REE baseline in Table 6. We noticed that each work uses
different hardware and software, which will make the comparison
unfair. So, we direct derive the results from their works to demon-
strate the performance using the TEE before and after (note that
low-end devices would generate more improvement compared with
high-end devices). The results demonstrate that our works are able
to deploy the large-size DNNs on resource-constraint mobile TEE
by leveraging the proposed progressive pruning approach. While
others approaches only deploy a few large-size DNNs on mobile
TEE. We can see from Table 6 that our approach has the 3.7x infer-
ence time overhead on AlexNet, which outcomes the TrustedDNN
and DarknetTZ. We also observe that HybridTEE achieves 6.2x
inference time improvements compared to the REE baseline on
GoogLeNet. That is because they run most layers of DNNs in the
cloud server to utilize its powerful computing resources. Although
our approach has more inference time overhead, the entire DNN
is protected by local mobile TEE without the concern of network
connection issues. Moreover, our approach introduces 6.8x infer-
ence time overhead, which is greater than DarkneTZ (i.e., -0.8x)

Table 6: Comparison of inference time overhead with existing
works that execute DNNs on mobile TEE.

Work ResNet-50 AlexNet VGG-16 GoogLeNet
HybridTEE [44] NS NS NS 6.2×∗

DarkneTZ [38] -0.8×† -5.1×§ NS NS
TrustedDNN [32] NS -5.9×∗∗ NS NS

Our -6.8×∗∗ -3.7×∗∗ -11.2×∗∗ -3.2×∗∗

∗ : Entire DNN in Mobile and Cloud TEE, † : A first few layers in Mobile TEE
§ : Only last layer in Mobile TEE,∗∗ : Entire DNN in Mobile TEE, NS: Not Support

on ResNet-50. However, DarkneTZ only protects the last layer by
mobile TEE, which will increase the risks of adversary attacks. The
results demonstrate that our approach can deploy the various size
of DNNs on mobile TEE with a fewer inference time overhead
compared with existing approaches.
4.4 Discussion
Security and Privacy Analysis. In this paper, the entire DNN
inference process is protected by the hardware-based mobile TEE,
ensuring that attackers cannot access the DNN weight and inter-
media result to compromise the DNN inference. Therefore, our
approach is capable of defending MIA, DRA, PIA, and GAN [15] at-
tacks. We can also eliminate layers’ information exposure to attacks
(e.g., Bit-flip attacks) to recover images and texts from intermedi-
ate gradients. Moreover, we have found that side-channel attacks
on CPU cache [12] could compromise the integrity of DNNs. We
plan to explore the side-channel attack protection methods (e.g.,
Privado [9]) to protect DNN data inside the mobile TEE.

Supported Machine Learning Models. In this paper, we focus
on typical used DNNs, including convolution and fully-connected
layers. We plan to apply our approach to other Machine Learning
models (e.g., Long Short Term Memory, recurrent neural networks,
K-nearest neighbor, and support vector machine). In addition, we
could also take the state-of-art compression approaches with quan-
tization that achieve a higher compression rate to apply the more
large size of DNNs on mobile TEE.

Training and Pruning on Mobile TEE. Currently, our work
focuses on DNNs inference. We have found that it is difficult to train
or prune a DNN model inside mobile TEE since they demand signif-
icant computational and memory resources compared to inference.
We plan to explore efficient methods for training and pruning on
the mobile TEE, such as memory optimization [42] and tiny batch
size [33] training.

Efficient Decryption onMobile TEE. In this paper, the pruned
DNNmodel and input are assumed encrypted and stored in REE.We
are aware that the decryption process will introduce inference time
overhead. However, existing study [26, 32, 38, 44] demonstrate that
the decryption process is practical to use and only introduces 3%-
5% time overhead of the inference time. We plan to adopt efficient
encryption/decryption algorithms (e.g., Optimal Homomorphic En-
cryption (OHE) [21]) to protect the DNN onmobile REE and decrypt
it into mobile TEE.

Power Consumption Measurements. Since energy consump-
tion is a critical factor that impacts system performance for mo-
bile devices, we estimate the rough energy consumption for our
approach compared with LL-TEE baselines by using the FLOPs
and loading time reduction, which are linearly proportional to the
energy consumption [31]. Our evaluation shows we can reduce

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2-10 times FLOPs and 8-30 times loading time reduction. Thus, the
energy consumption could be reduced by around 2-10 times and
2-30 times for CPU execution and loading processes, respectively.
To accurately measure the power consumption, we plan to use
an off-the-shelf high-precision power monitor to track the power
consumed by a mobile device.
5 RELATEDWORK
5.1 Optimizing DNN Inference
Several approaches (e.g., pruning [60], distillation [59], and quan-
tization [61]) have been proposed to optimize the DNN inference
by minimizing parameters involved in the computation tasks or
memory size. Structured/unstructured pruning is one of the most
popular network optimization techniques due to its effectiveness
in reducing network complexity.

Although structured pruning achieves a relatively lower prun-
ing rate than unstructured pruning, it does not require specific
hardware platforms to obtain acceleration in practice. For example,
Zhao et al. [63] re-formulate the channel pruning problem within
Bayesian probabilistic learning to operate on a redefined scaling
factor in Batch Normalization. Lin et al. [28] globally prune the
unimportant filters across all layers first, then recover the mistak-
enly pruned filters to improve the accuracy. Different from the ex-
isting approaches to identifying the redundant parameters coarsely,
we compute and adjust the importance of the parameters gradually,
resulting in accurate pruning and reduced retraining iterations.

Furthermore, existing pruning approaches (e.g., [63, 64]) have
adopted the static memory allocation technique (e.g., tensor or array
in PyTorch) for the parameters of DNNs. As a result, the pruned
parameters still occupy the memory space and are involved in the
computation process of inference. To address the issues, researchers
developed software and hardware co-design to eliminate redundant
computation and memory costs. For example, EIE [11] proposed an
inference engine to skip themultiplication of the pruned parameters
by designing a scalable array of processing elements in memory.
ISAAC [51] reduced the multiply-accumulate operations involved
in DNNs by using the memristor crossbar arrays. Although such
works could achieve inference improvements on pruned DNNs,
they need dedicated hardware designs, which are not practical for
some mobile devices. In contrast, our work optimizes the pruned
DNNs by removing the pruned memory occupation by only using
low-level programming techniques. Thus, our approach can easily
be applied to mobile devices at a low cost.
5.2 Preserving Privacy of DNN Models
Researchers have found that attackers can leverage the memorized
information of DNN layers (e.g., memory content and address) to
infer sensitive properties about the input data, leading to severe
privacy risks [46]. In addition, the confidentiality and integrity of a
DNN model itself are subject to a variety of security threats [35].
Therefore, various security methods have been proposed to defend
against these threats (e.g., k-anonymity [27], randomized noise
addition [39], and encryption-based [45]). However, such methods
are hard to be applied to protect DNNs on mobile devices since
they involve intensive computational costs.

Recently, researchers have adopted TEE to protect DNN since it
provides better computation efficiency. However, they still have to
overcome of resource constraint of TEE on mobile devices. Along

this direction, researchers have developed several TEE-oriented
partitioning techniques [10, 38] to partition DNN and run the part
of it inside the TEE on themobile device or cloud server, respectively.
For example, DarkneTZ [38] runs the first few layers and the last
layer inside the TEE on mobile devices and leaves the other layers
unprotected to defend against MIA. However, attackers could still
perform DRA and PIA attacks on unprotected parts. To protect
all layers of DNNs, some works try to run the entire DNNs inside
the TEE. For example, HybridTEE [6] places the first few layers
in the TEE on mobile devices, while other layers are offloaded to
the TEE on the cloud servers. Occlumency [26] offloads the DNN
from mobile devices to the TEE on the cloud to leverage powerful
computing resources. However, the performance of thesemethods is
suffered from unstable and unpredictable bandwidth, which makes
this method not practical for some application scenarios. Trusted-
DNN [32] partitions the convolutional matrix into multiple small
ones and leverages the quantification method (32 bit to 1 bit) to
compress the DNN to reduce the memory demand. However, such
an approach suffers a significant accuracy drop.

Unlike these works that only focus on the partition of the DNN,
we first prune the DNN to reduce computational and memory costs
while maintaining high accuracy. Then, the pruned model is op-
timized for real-world acceleration and partitioned into multiple
parts containing as many layers as possible while fitting the mem-
ory constraint of the mobile TEE. Therefore, our approach promises
entire DNNs to be executed in the mobile TEE with minimal infer-
ence time overhead and without network connection issues.

6 CONCLUSION
In this work, we develop a novel mobile TEE-based security frame-
work to securely execute entire DNNs in the resource-constrained
mobile TEE only introducing a few inference time overheads. Specif-
ically, we first gradually prune the redundant neurons to reduce
the memory and computational cost in a fine-grained way. Then,
we deallocate the memory storage of pruned neurons in a real im-
plementation by utilizing the low-level programming technique. To
realize a minimized loading time overhead, we develop an adaptive
partition mechanism that partition as many layers as possible into
one part while fitting the memory constraint of mobile TEE. As a
result, the loading iterations are reduced compared to the existing
layer-by-layer approach. Our experiments with various DNNs and
open-source datasets demonstrate that we can achieve 2-30 times
less inference time with comparable accuracy compared to existing
approaches securing entire DNNs with mobile TEE.
ACKNOWLEDGMENT
This work was partially supported by the the National Sci-
ence Foundation Grants CCF1909963, CCF2211163, CNS2120396,
CNS2304766, CNS2145389, CNS2120276, CCF2000480, CCF2028873,
and CNS2120350.

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. The Journal of Machine Learning Research 13, 1 (2012), 281–305.
[2] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. Sok:

Understanding the prevailing security vulnerabilities in trustzone-assisted tee
systems. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1416–1432.

[3] Victor Costan and Srinivas Devadas. 2016. Intel sgx explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hu et al.

[4] Scott G Dacko. 2017. Enabling smart retail settings via mobile augmented reality
shopping apps. Technological forecasting and social change 124 (2017), 243–256.

[5] Tim Dettmers and Luke Zettlemoyer. 2020. Sparse Networks from Scratch:
Faster Training without Losing Performance. https://openreview.net/forum?id=
ByeSYa4KPS

[6] Akshay Gangal, Mengmei Ye, and Sheng Wei. 2020. HybridTEE: Secure Mobile
DNN Execution Using Hybrid Trusted Execution Environment. In 2020 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 1–6.

[7] Simson Garfinkel, JohnMAbowd, and Christian Martindale. 2019. Understanding
database reconstruction attacks on public data. Commun. ACM 62, 3 (2019).

[8] David Goldberg. 1991. What every computer scientist should know about floating-
point arithmetic. ACM computing surveys (CSUR) 23, 1 (1991), 5–48.

[9] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and Ramachandran
Ramjee. 2018. Privado: Practical and secure DNN inference with enclaves. arXiv
preprint arXiv:1810.00602 (2018).

[10] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani Jamjoom, Ankita
Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. Confidential inference via
ternary model partitioning. arXiv preprint arXiv:1807.00969 (2018).

[11] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016).

[12] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark,
Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William
Lewis, Mu Li, et al. 2018. Achieving human parity on automatic chinese to
english news translation. arXiv preprint arXiv:1803.05567 (2018).

[13] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. Amc:
Automl for model compression and acceleration on mobile devices. In Proceedings
of the European Conference on Computer Vision (ECCV).

[14] Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez,
Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.
2019. Streaming end-to-end speech recognition for mobile devices. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 6381–6385.

[15] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models
under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603–618.

[16] Xueshi Hou, Yao Lu, and Sujit Dey. 2017. Wireless VR/AR with edge/cloud
computing. In 2017 26th International Conference on Computer Communication
and Networks (ICCCN). IEEE, 1–8.

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[18] Bin Hu and Jiacun Wang. 2020. Deep learning based hand gesture recognition
and UAV flight controls. International Journal of Automation and Computing 17,
1 (2020), 17–29.

[19] Bin Hu, Tianming Zhao, Yucheng Xie, Yan Wang, Xiaonan Guo, Jerry Cheng,
and Yingying Chen. 2021. Details omitted for double-blind reviewing. In 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[20] Zehao Huang and Naiyan Wang. 2018. Data-driven sparse structure selection
for deep neural networks. In ECCV.

[21] G Kalyani and Shilpa Chaudhari. 2020. An efficient approach for enhancing
security in Internet of Things using the optimum authentication key. International
Journal of Computers and Applications 42, 3 (2020), 306–314.

[22] Kyungtae Kim, Chung Hwan Kim, Junghwan" John" Rhee, Xiao Yu, Haifeng
Chen, Dave Tian, and Byoungyoung Lee. 2020. Vessels: Efficient and scalable
deep learning prediction on trusted processors. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 462–476.

[23] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
(2009).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[25] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In CVPR.

[26] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:
Privacy-preserving remote deep-learning inference using sgx. In The 25th Annual
International Conference on Mobile Computing and Networking. 1–17.

[27] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. 2005. Incognito:
Efficient full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 49–60.

[28] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang
Zhang. 2018. Accelerating Convolutional Networks via Global & Dynamic Filter
Pruning.. In IJCAI.

[29] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang
Ye, Feiyue Huang, and David Doermann. 2019. Towards optimal structured cnn
pruning via generative adversarial learning. In CVPR.

[30] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye.
2020. AutoCompress: An Automatic DNN Structured Pruning Framework for
Ultra-High Compression Rates.. In AAAI. 4876–4883.

[31] Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava. 2021.
SecDeep: Secure and Performant On-device Deep Learning Inference Framework
for Mobile and IoT Devices. In Proceedings of the International Conference on
Internet-of-Things Design and Implementation. 67–79.

[32] Zhuang Liu, Ye Lu, Xueshuo Xie, Yaozheng Fang, Zhaolong Jian, and Tao Li.
2021. Trusted-DNN: A TrustZone-based Adaptive Isolation Strategy for Deep
Neural Networks. In ACM Turing Award Celebration Conference-China (ACM
TURC 2021).

[33] Dominic Masters and Carlo Luschi. 2018. Revisiting small batch training for deep
neural networks. arXiv preprint arXiv:1804.07612 (2018).

[34] Brian McGillion, Tanel Dettenborn, Thomas Nyman, and N Asokan. 2015. Open-
TEE–An Open Virtual Trusted Execution Environment. In 2015 IEEE Trust-
com/BigDataSE/ISPA, Vol. 1. IEEE, 400–407.

[35] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.

[36] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. 2020. A survey on deep
neural network compression: Challenges, overview, and solutions. arXiv preprint
arXiv:2010.03954 (2020).

[37] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. arXiv preprint arXiv:2104.14380 (2021).

[38] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. Darknetz: towards
model privacy at the edge using trusted execution environments. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services.

[39] Shibnath Mukherjee, Zhiyuan Chen, and Aryya Gangopadhyay. 2006. A privacy-
preserving technique for Euclidean distance-based mining algorithms using
Fourier-related transforms. The VLDB journal 15, 4 (2006), 293–315.

[40] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan
Feldman. 2019. Data-independent neural pruning via coresets. In International
Conference on Learning Representations.

[41] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-
morphic encryption be practical?. In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. 113–124.

[42] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
2021. Memory-efficient pipeline-parallel dnn training. In International Conference
on Machine Learning. PMLR, 7937–7947.

[43] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 907–922.

[44] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis
Katevas, Hamid R Rabiee, Nicholas D Lane, and Hamed Haddadi. 2020. A hybrid
deep learning architecture for privacy-preserving mobile analytics. IEEE Internet
of Things Journal 7, 5 (2020), 4505–4518.

[45] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big data analytics over encrypted datasets with seabed.
In 12th USENIX symposium on operating systems design and implementation.

[46] Adityanarayanan Radhakrishnan, Caroline Uhler, and Mikhail Belkin. 2018.
Downsampling leads to Image Memorization in Convolutional Autoencoders.
(2018).

[47] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-flip attack: Crush-
ing neural network with progressive bit search. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1211–1220.

[48] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[49] Ronald Rivest. 1992. The MD5 message-digest algorithm. Technical Report.
[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[51] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[52] Yonghee Shin and Laurie Williams. 2008. An empirical model to predict security
vulnerabilities using code complexity metrics. In Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering andmeasurement.

https://openreview.net/forum?id=ByeSYa4KPS
https://openreview.net/forum?id=ByeSYa4KPS
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

Secure and Efficient Mobile DNN Using Trusted Execution Environments Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[53] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3–18.

[54] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[55] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI conference on artificial intelligence.

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[57] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and
Xiaolin Hu. 2020. Pruning from Scratch.. In AAAI. 12273–12280.

[58] Mengmei Ye, Jonathan Sherman, Witawas Srisa-An, and Sheng Wei. 2018. TZS-
licer: Security-aware dynamic program slicing for hardware isolation. In 2018
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[59] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. 2017. A gift from knowl-
edge distillation: Fast optimization, network minimization and transfer learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[60] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. 2018. Nisp: Pruning networks
using neuron importance score propagation. In CVPR.

[61] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. Lq-nets:
Learned quantization for highly accurate and compact deep neural networks. In
Proceedings of the European conference on computer vision (ECCV). 365–382.

[62] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. 2018. A systematic dnn weight pruning framework using
alternating direction method of multipliers. In ECCV.

[63] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi
Tian. 2019. Variational convolutional neural network pruning. In CVPR.

[64] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao
Wu, Junzhou Huang, and Jinhui Zhu. 2018. Discrimination-aware channel prun-
ing for deep neural networks. In Advances in Neural Information Processing
Systems.

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted execution environment (TEE)
	2.2 Neural Network Pruning

	3 Methodology
	3.1 Threat Model and Assumptions
	3.2 Design Goals
	3.3 Design Overview
	3.4 Progressive Pruning
	3.5 Inference Optimization

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance of Pruning
	4.3 Inference Latency
	4.4 Discussion

	5 Related Work
	5.1 Optimizing DNN Inference
	5.2 Preserving Privacy of DNN Models

	6 Conclusion
	References

